This note is a stripped down version of a published paper on the Pottspartition function, where we concentrate solely on the linear coding aspect ofour approach. It is meant as a resource for people interested in coding theorybut who do not know much of the mathematics involved and how quantumcomputation may provide a speed up in the computation of a very importantquantity in coding theory. We provide a theorem on the quantum computation ofthe Weight Enumerator polynomial for a restricted family of cyclic codes. Thecomplexity of obtaining an exact evaluation is $O(k^{2s}(\log q)^{2})$, where$s$ is a parameter which determines the class of cyclic codes in question, $q$is the characteristic of the finite field over which the code is defined, and$k$ is the dimension of the code. We also provide an overview of cyclotomiccosets and discuss applications including how they can be used to speed up thecomputation of the weight enumerator polynomial (which is related to the Pottspartition function). We also give an algorithm which returns the coset leadersand the size of each coset from the list $\{0,1,2,...,N-1\}$, whose timecomplexity is soft-O(N). This algorithm uses standard techniques but we includeit as a resource for students. Note that cyclotomic cosets do not improve theasymptotic complexity of the computation of weight enumerators.
展开▼
机译:本说明是关于Pottspartition函数的已发表论文的精简版,在此我们仅关注方法的线性编码方面。它是为对编码理论感兴趣的人提供的一种资源,但是他们对所涉及的数学知识不甚了解,以及量子计算如何加快编码理论中非常重要的数量的计算。我们提供了有关受限循环码族的加权枚举多项式的量子计算定理。获得精确评估的复杂度是$ O(k ^ {2s}(\ log q)^ {2})$,其中$ s $是确定所讨论循环代码类别的参数,$ q $是特征定义代码的有限域的值,$ k $是代码的维数。我们还提供了环线虫的概述,并讨论了应用程序,包括如何使用它们来加快重量枚举器多项式的计算(这与Pottspartition函数有关)。我们还给出了一种算法,该算法从时间复杂度为soft-O(N)的列表$ \ {0,1,2,...,N-1 \} $中返回陪伴首领和每个陪伴的大小。该算法使用标准技术,但我们将其作为学生的资源。请注意,环原子陪集不能提高加权枚举器计算的渐近复杂性。
展开▼